

Available online at www.sciencedirect.com

Tetrahedron Letters

Tetrahedron Letters 47 (2006) 7417-7421

Direct organocatalytic asymmetric reductive Mannich-type reactions

Gui-Ling Zhao and Armando Córdova*

Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden

Received 18 July 2006; revised 4 August 2006; accepted 17 August 2006

Abstract—A direct asymmetric reductive Manich-type reaction that allows for the formation of three contiguous stereocenters with high chemo-, diastereo-, and enantioselectivity is presented.

© 2006 Elsevier Ltd. All rights reserved.

The development of direct catalytic Mannich reactions has received considerable attention in recent years.¹ Such reactions have been used for the enantioselective synthesis of several important nitrogen-containing products such as amino acids, amino sugars, imino sugars, and amino alcohols.^{1–12} However, there is, to our knowledge, no report of a direct catalytic asymmetric reductive Mannich-type reaction.¹³ The advantage of this transformation would be that three contiguous stereocenters could be constructed via a possible organocatalytic asymmetric domino reaction sequence (Fig. 1).^{14,15} Thus, by employing a metal-free asymmetric transfer hydrogenation reaction followed by a domino enantioselective Mannich-type reaction three contiguous stereocenters could possibly be assembled in a stereoselective fashion. Herein, we describe a novel amine-catalyzed direct asymmetric reductive Mannichtype reaction that furnishes the corresponding products with high chemo-, diastereo-, and enantioselectivity.

In the initial experiments, we screened different chiral amines for their ability to catalyze the List-MacMillan transfer hydrogenation reaction¹⁶ since MacMillan's catalysts failed to catalyze the domino reductive Mannich-type reaction under our reaction conditions. To our delight, we found that chiral pyrrolidines 1 (10 mol %) catalyzed the transfer hydrogenation of aldehyde **2a** using Hantzsch ester **3** as the hydrogen source with high enantioselectivity (Table 1, entries 1 and 2).

The reactions proceeded smoothly and gave the corresponding chiral aldehydes **4** in good to high yields with 92–97% ee.¹⁷ Encouraged by these results, we decided to perform the direct catalytic reductive Mannich-type reactions with chiral pyrrolidine **1a** as the catalyst and N-PMP-protected α -iminoglyoxylate as the electrophile (Table 2).¹⁸

The reactions proceeded with high chemo-, *anti*-, and enantioselectivity and gave the corresponding amino acid derivatives **5** in good yields with up to 50:1 dr and 99% ee.¹⁹ Notably, the subsequent C–C bond-forming step led to a higher enantioselectivity of the Mannich products **5** as compared to the transfer hydrogenation products **4**. We also developed an organocatalytic enantioselective reductive Mannich protocol, which leads to other diastereomers of amino acids **5** (Scheme 1). Hence, a catalytic amount of (*R*)-proline was added to the reaction mixture together with N-PMP-protected α -iminoglyoxylate and a *syn*-selective Mannich addition was achieved with high enantioselectivity in a one-pot reaction.

For example, Mannich product **5e** was assembled in an asymmetric fashion in one-step in 80% yield with 5:1 dr and 96% ee.²⁰

The absolute stereochemistry of the chiral aldehydes 4 was established by optical rotation and comparison with the literature.^{16b} Hence, (*S*)-diphenylprolinols 1 catalyzed the asymmetric formation of (3R)-aldehydes **4a–4d**. The stereochemical outcome of the reaction can be explained by reaction pathway I (Fig. 2). Thus, efficient shielding of the *Re*-face (**R** = Ar) of the iminium

^{*} Corresponding author. Tel.: +46 8 162479; fax: +46 8 154908; e-mail addresses: acordova@organ.su.se; acordova1a@netscape.net

Figure 1. Catalytic cycles for the direct catalytic enantioselective reductive Mannich-type reaction.

ion with *trans*-configuration led to *Si*-facial attack by the hydride, which gave the chiral enamine in transition state **II**. Next, attack on the *Si*-face of the imine with a *trans*-configuration by the chiral enamine gives the amino acid derivative (2S,3R,4R)-5 with a high *anti*-selectivity.^{18a}

Stabilization of the *trans*-configuration and efficient shielding of one of the faces of the chiral iminium ion and enamine, respectively, by the chiral pyrrolidine

1a can explain the high stereoselectivity of the reaction.

In summary, we have developed a novel highly enantioselective direct organocatalytic asymmetric reductive Mannich-type reaction that furnishes three contiguous stereocenters in one step. The asymmetric reductive Mannich-type reactions which are catalyzed by simple diarylprolinol derivatives, proceed via a catalytic asymmetric domino reaction pathway and furnish amino acid

^a Isolated yield of the pure products after silica gel chromatography.

^b Determined by chiral-phase GC or HPLC analysis.

^c Amount of product formed as determined by chiral-phase GC analysis.

^d Not determined.

Table 2. Direct catalytic enantioselective reductive Mannich-type reactions

	R H C	1a (10 mol%) benzoic acid (10 mol%) HCl ₃ , - 20 °C, 63 h 3 1.1 equiv	$ \begin{bmatrix} PMP \\ N \\ H \\ CO_2Et \\ +4 °C, 24 h \end{bmatrix} $	$R \xrightarrow{HN} CO_2Et$	
Entry	R	Product	Yield ^a (%)	Dr^{b}	ee ^c (%)
1	Ph	5a	69	16:1	99
2	$4-MeC_6H_4$	5b	54	>10:1	96
3	$4-BrC_6H_4$	5c	58	10:1	>95
4	2-Naphthyl	5d	70	50:1	97

^a Isolated yield of the pure products after silica gel chromatography.

^b anti:syn Ratio as determined by NMR analysis of the crude product.

^c Determined by chiral-phase HPLC analyses. PMP = p-methoxyphenyl.

Scheme 1. Direct catalytic enantioselective reductive Mannich-type reaction with 1a and (R)-proline as the catalysts.

derivatives in good yields with up to 50:1 dr and up to 99% ee. Further studies on the development of direct catalytic enantioselective reductive intermolecular C–C

bond-forming reactions and their application in catalytic asymmetric domino- and cascade-reactions are ongoing.

Figure 2. Proposed reaction pathway I and transition state II for the protected diarylprolinol catalyzed direct asymmetric reductive Mannich-type reaction.

Acknowledgements

We gratefully acknowledge the Swedish National Research Council, Carl-Trygger Foundation, Lars-Hierta Foundation, and Medivir AB for financial support.

References and notes

- 1. Córdova, A. Acc. Chem. Res. 2004, 37, 102.
- (a) Kobayashi, S.; Ishitani, H.; Ueno, M. J. Am. Chem. Soc. 1998, 120, 431; (b) Hamada, T.; Manabe, K.; Kobayashi, S. J. Am. Chem. Soc. 2004, 126, 7768; (c) Kobayashi, S.; Ishitani, H. Chem. Rev. 1999, 99, 1069; (d) Kobayashi, S.; Matsubara, R.; Nakamura, Y.; Kitagawa, H.; Sugiura, M. J. Am. Chem. Soc. 2003, 125, 2507.
- 3. Yamasaki, S.; Iida, T.; Shibasaki, M. *Tetrahedron Lett.* **1999**, *40*, 307.
- (a) Matsunaga, S.; Kumagai, N.; Harada, N.; Harada, S.; Shibasaki, M. J. Am. Chem. Soc. 2003, 125, 4712; (b) Trost, B. M.; Terrell, L. M. A. J. Am. Chem. Soc. 2003, 125, 338.
- Juhl, K.; Gathergood, N.; Jørgensen, K. A. Angew. Chem., Int. Ed. 2001, 40, 2995.
- Harada, S.; Handa, S.; Matsunaga, S.; Shibasaki, M. Angew. Chem., Int. Ed. 2005, 43, 4365.
- Akiyama, T.; Itoh, J.; Yokota, K.; Fuchibe, K. Angew. Chem., Int. Ed. 2004, 43, 1566; Uraguchi, D.; Terada, M. J. Am. Chem. Soc. 2004, 126, 5356.
- Lou, S.; Taoka, B. M.; Ting, A.; Schaus, S. J. Am. Chem. Soc. 2005, 127, 11256.
- 9. (a) List, B. J. Am. Chem. Soc. 2000, 122, 9336; (b) Córdova, A. Chem. Eur. J. 2004, 10, 1987; (c) Córdova, A. Synlett 2003, 1651; (d) Hayashi, Y.; Tsuboi, W.; Ashimine, I.; Urushima, T.; Shoji, M.; Sakai, K. Angew. Chem., Int. Ed. 2003, 42, 3677; (e) Münch, A.; Wendt, B.; Christmann, M. Synlett 2004, 2751; (f) Zhuang, W.; Saaby, S.; Jørgensen, K. A. Angew. Chem., Int. Ed. 2004, 43, 4476; (g) Córdova, A.; Watanabe, S.-i.; Tanaka, F.; Notz, W.; Barbas, C. F., III. J. Am. Chem. Soc. 2002, 124, 1866; (h) Fustero, S.; Jimenez, D.; Sanz-Cervera, J. F.; Sanchez-Rosello, M.; Esteban, E.; Simon-Fuentes, A. Org. Lett. 2005, 7, 3433; (i) Córdova, A.; Barbas, C. F., III. Tetrahedron Lett. 2002, 43, 7749; (j) Westermann, B.; Neuhaus, C. Angew. Chem., Int. Ed. 2005, 44, 4077; (k) Ibrahem, I.; Córdova, A. Tetrahedron Lett. 2005, 46, 2839; (1) Liao, W.-W.; Ibrahem, I.; Córdova, A. Chem. Commun. 2006, 674; (m) Enders, D.; Grondal, C.; Vrettou, M.; Raabe, G. Angew. Chem., Int. Ed. 2005, 44, 4079; (n) Marques, M. M. B. Angew. Chem., Int. Ed. 2006, 45, 348.
- Cobb, A. J. A.; Shaw, D. M.; Ley, S. V. Synlett 2004, 558;
 Cobb, A. J. A.; Shaw, D. M.; Longbottom, D. A.; Gold, J. B.; Ley, S. V. Org. Biomol. Chem. 2005, 3, 84.

- 11. Ibrahem, I.; Zou, W.; Engqvist, M.; Xu, Y. Chem. Eur. J. 2005, 11, 7024.
- (a) Yoshida, T.; Morimoto, H.; Kumagai, N.; Matsunaga, S.; Shibasaki, M. Angew. Chem., Int. Ed. 2005, 44, 3470;
 (b) Kano, T.; Yamaguchi, Y.; Tokuda, O.; Maruoka, K. J. Am. Chem. Soc. 2005, 127, 16408;
 (c) Mitsumori, S.; Zhang, H.; Cheong, P. H.-Y.; Houk, K. N.; Tanaka, F.; Barbas, C. F., III. J. Am. Chem. Soc. 2006, 128, 1040;
 (d) Trost, B. M.; Jaratjaroonphong, J.; Reutrakul, U. J. Am. Chem. Soc. 2006, 128, 2778.
- For an iridium-catalyzed reductive Mannich-type reaction see: Townes, J. A.; Evans, M. A.; Queffelec, J.; Taylor, S. J.; Morken, J. P. Org. Lett. 2002, 4, 2537.
- For selected examples of organocatalytic asymmetric domino and cascade reactions see: (a) Huang, Y.; Walji, A. M.; Larsen, C. H.; MacMillan, D. W. C. J. Am. Chem. Soc. 2005, 127, 15051; (b) Yang, J. W.; Hechavarria Fonseca, M. T.; List, B. J. Am. Chem. Soc. 2005, 127, 15036; (c) Marigo, M.; Schulte, T.; Franzén, J.; Jørgensen, K. A. J. Am. Chem. Soc. 2005, 127, 15710; (d) List, B. Chem. Commun. 2006, 819; (e) Yamamoto, Y.; Momiyama, N.; Yamamoto, H. J. Am. Chem. Soc. 2004, 126, 5962; (f) Ramachary, D. B.; Chowdari, N. S.; Barbas, C. F., III. Angew. Chem., Int. Ed. 2003, 42, 4233; (g) Sundén, H.; Ibrahem, I.; Eriksson, L.; Córdova, A. Angew. Chem., Int. Ed. 2005, 44, 4877.
- 15. For an excellent review on domino reactions see: Tietze, L. F. Chem. Rev. 1996, 96, 115.
- (a) Yang, J. W.; Hechevarria Fonseca, M. T.; Vignola, N.; List, B. Angew. Chem., Int. Ed. 2005, 44, 108; (b) Guellet, S. G.; Tuttle, J. B.; MacMillan, D. W. C. J. Am. Chem. Soc. 2005, 127, 32; (c) Mayer, S.; List, B. Angew. Chem., Int. Ed. 2006, 45, 4193; (d) Adolfsson, H. Angew. Chem., Int. Ed. 2005, 3340.
- 17. A solution of aldehyde **2** (0.5 mmol) and catalyst **1a** (16 mg, 10 mol %) in CHCl₃ (2 mL) was cooled to -20 °C. To this solution was added benzoic acid (6 mg, 0.05 mmol, 10 mol %) and Hantzsch ester (140 mg, 0.55 mmol). The reaction mixture was stirred at -20 °C for 63 h, after which the solvent was removed and the residue was purified by silica gel column chromatography (Et₂O/ pentane mixtures) to give **4**.
- 18. Both enantiomers of α, α -diphenylprolinol and α, α -di(2naphthyl)prolinol are commercially available and TMS protected in one step. For the use of protected diarylprolinols in anti-selective Mannich type reactions see: (a) Ibrahem, I.; Córdova, A. Chem. Commun. 2006, 1760; (b) Franzén, J.; Marigo, M.; Fielenbach, D.; Wabnitz, T. C.; Kjaersgaard, A.; Jørgensen, K. A. J. Am. Chem. Soc. 2005, 127, 18296; See also: (c) Marigo, M.; Wabnitz, T. C.; Fielenbach, D.; Jørgensen, K. A. Angew. Chem., Int. Ed. 2005, 44, 794; (d) Marigo, M.; Fielenbach, D.; Braunton, A.; Kjaersgaard, A.; Jørgensen, K. A. Angew. Chem., Int. Ed. 2005, 44, 3703; (e) Marigo, M.; Franzén, J.; Poulsen, T. B.; Zhuang, W.; Jørgensen, K. A. J. Am. Chem. Soc. 2005, 127, 6964; (f) Hayashi, Y.; Gotoh, H.; Hayashi, T.; Shoji, M. Angew. Chem., Int. Ed. 2005, 44, 4212; (g) Sundén, H.; Ibrahem, I.; Córdova, A. Tetrahedron Lett. 2006, 47, 99.
- 19. A solution of aldehyde 2 (0.5 mmol) and catalyst 1a (16 mg, 10 mol %) in CHCl₃ (2 mL) was cooled to -20 °C. To this solution was added benzoic acid (6 mg, 0.05 mmol, 10 mol %) and Hantzsch ester (140 mg, 0.55 mmol). The resulting yellow suspension was stirred at -20 °C for 63 h. Next, the reaction temperature was increased to +4 °C and N-PMP-protected α -iminoglyoxylate (34 mg, 0.17 mmol) was added. The reaction mixture was stirred for 24 h at +4 °C. Next, the solvent was removed and the residue was purified by silica-gel column chromatography

7421

(toluene/EtOAc = 20/1) to give amino acid derivatives 5 as oils. It should be mentioned that products 5 can epimerize during silica gel column chromatography. To overcome this, the aldehyde moiety of products 5 can be reduced with NaBH₄ to the corresponding alcohol. Compound 5a: ¹H NMR (300 MHz, CDCl₃) δ 1.16 (t, J = 7.2 Hz, 3H), 1.42 (d, J = 6.9 Hz, 3H), 3.24 (ddd, J = 10.2, 3.9, 2.7 Hz, 1H), 3.40 (dd, J = 10.2, 6.9 Hz, 1H), 3.72 (s, 3H), 3.73-3.75 (m, 1H), 3.90 (br s, 1H), 4.04 (q, J = 7.2 Hz, 2H), 6.32 (d, J = 9.0 Hz, 2H), 6.67 (d, J = 9.0 Hz, 2H), 7.17–7.33 (m, 5H), 9.96 (d, J = 2.7 Hz, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 14.2, 20.4, 38.4, 55.7, 58.2, 59.5, 61.5, 114.7, 116.1, 127.2, 127.8, 129.0, 140.9, 143.6, 153.2, 172.9, 203.8. The ee was determined by HPLC on Daicel Chiralpak As with iso-hexane/i-PrOH (97:3) as the eluent: major isomer: $t_{\rm R} = 26.272$ min; minor isomer: $t_{\rm R} = 50.809 \text{ min}; \ [\alpha]_{\rm D}^{25} - 14.6 \ (c \ 1.0, \ {\rm CHCl}_3).$ HRMS(ESI) the exact mass calculated for [M+H]⁺ $(C_{21}H_{26}NO_4)$ requires m/z 356.1862, found m/z 356.1864. Compound **5b**: ¹H NMR (300 MHz, CDCl₃) δ 1.15 (t, J = 7.2 Hz, 3H), 1.38 (d, J = 6.6 Hz, 3H), 2.35 (s, 3H), 3.19 (ddd, J = 10.2, 4.5, 2.4 Hz, 1H), 3.36 (dd, J = 10.2, 6.9 Hz, 1H), 3.72 (s, 3H), 3.73–3.74 (m, 1H), 3.90 (br s, 1H), 4.04 (q, J = 7.2 Hz, 2H), 6.34 (d, J = 8.7 Hz, 2H), 6.68 (d, J = 8.7 Hz, 2H), 7.08–7.19 (m, 4H), 9.94 (d, J = 2.4 Hz, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 14.2, 20.4, 21.2, 38.0, 55.8, 58.2, 59.6, 61.5, 114.7, 116.1, 127.7, 129.6, 135.7, 140.5, 141.0, 153.1, 173.0, 203.9. The ee was determined by HPLC on Daicel Chiralpak As with isohexane/*i*-PrOH (97:3) as the eluent: major isomer: $t_{\rm R} =$ 23.161 min; minor isomer: $t_{\rm R} = 43.670$ min; $[\alpha]_{\rm D}^{25} - 24.9$ (c 1.0, CHCl₃). Compound **5d**: ¹H NMR (400 MHz, CDCl₃) δ 1.12 (t, J = 7.2 Hz, 3H), 1.51 (d, J = 7.2 Hz, 3H), 3.34 (ddd, J = 10.4, 4.4, 2.0 Hz, 1H), 3.58 (dd, J = 10.4, 6.8 Hz, 1H), 3.70 (s, 3H), 3.88 (br s, 1H), 3.99 (dq, J = 7.2, 2.4 Hz, 2H), 3.99–4.02 (m, 1H), 6.30 (d, J = 9.2 Hz, 2H), 6.61 (d, J = 9.2 Hz, 2H), 7.38 (dd, J = 8.4, 1.2 Hz, 1H), 7.46–7.50 (m, 2H), 7.61 (s, 1H), 7.70–7.73 (m, 1H), 7.82–7.85 (m, 2H), 10.01 (d, J = 2.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 14.2, 20.2, 38.5, 55.8, 58.2, 59.5, 61.5, 114.7, 116.0, 125.5, 126.0, 126.4, 126.9, 127.7, 127.9, 128.4, 128.8, 132.7, 133.6, 140.8, 153.1, 172.9, 203.8. The ee was determined by HPLC on Daicel Chiralpak As with *iso*-hexane/*i*-PrOH (97:3) as the eluent: major isomer: $t_{\rm R} = 37.666$ min; minor isomer: $t_{\rm R} = 61.701$ min; $[\alpha]_{\rm D}^{25} - 20.4$ (c 1.0, CHCl₃).

20. A solution of aldehyde 2d (98 mg, 0.5 mmol) and catalyst 1a (16 mg, 10 mol %) in CHCl₃ (0.5 mL) was cooled to -20 °C. To this solution was added benzoic acid (6 mg, 0.05 mmol, 10 mol %) and Hantzsch ester (140 mg, 0.55 mmol). The resulting yellow suspension was stirred at -20 °C for 63 h. The mixture was warmed to +4 °C and DMSO (1.5 mL) was added. Then D-proline (20 mg, 0.175 mmol, 35 mol %) and N-PMP-protected α-iminoglyoxylate (34 mg, 0.17 mmol) was added. The reaction mixture was stirred for 24 h at +4 °C. Next, the reaction mixture was washed with water and extracted with EtOAc. The organic phase was collected and dried over Na₂SO₄. The solvent was removed and the crude product was purified by silica gel column chromatography (toluene/ EtOAc = 20/1) to give a mixture of **5e** (5:1, 55 mg, yield 80%).